Cost-effective uncooled InGaAs SWIR image sensors and how to use them in Machine Vision

Sébastien Frasse-Sombet – Product Line Manager
Introduction
What is SWIR Imaging?
Sofradir Group

- Global leader in Infrared Technologies
- 30+ years of experience
- ~1000 employees
Infrared Regions

Reflective Light

Thermal Radiation

- **SWIR**: 0.4 µm
- **MWIR**: 0.9 µm
- **LWIR**: 2.5 µm
- **VLWIR**: 10 µm
- **15 µm**
Sofradir Technologies

SWIR

MWIR

LWIR

VLWIR

0.4µm 0.9µm 2.5µm 10µm 15µm

(TEC Cooling)

MCT (Cryogenic Cooling)

InGaAs (TEC Cooling)

or

InSb (Cryogenic Cooling)

QWIP (Cryogenic Cooling)

Microbolometer (Uncooled)
Light-Material interaction depends on wavelength

Using light outside of visible enables detection of features out of reach for the human eye (ex: operators) and for CMOS/CCD sensors

SWIR light is reflective: Similar implementation as visible cameras
A Few Examples

<table>
<thead>
<tr>
<th>Application: Wafer inspection</th>
<th>Application: Moisture detection</th>
<th>Application: Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon is opaque in Visible but transparent above 1100nm</td>
<td>Water is transparent in Visible but opaque in SWIR</td>
<td>Reduced atmospheric scattering at longer wavelengths</td>
</tr>
</tbody>
</table>

Visible | **SWIR** | **Visible** | **SWIR** | **Visible** | **SWIR**
Applications for SWIR Imaging
Semiconductors

⇒ Largest Machine Vision market by revenue

• Silicon becomes transparent above 1100nm
 ⇒ Inspection of defects through ingots and wafers
 ⇒ Alignment of 3D ICs
 ⇒ Failure analysis, quality control

• Photovoltaics
 ⇒ Luminescence imaging emitting in SWIR
 ⇒ Detection of defects
 ⇒ Quantification of cells efficiency
Spectral Imaging for Sorting

Collection of Spectral Information for Material Analysis

- Non-destructive
- Non-invasive
- Chemical-free
- 100% screening
- Instant results
- In-line compatible

SWIR

Organic Materials Chemicals
Example: Food Products

Automatic in-line quality assessment

Fruits, Vegetables, Cereals
- Total soluble solids (Sugars)
- Total acidity
- Moisture content
- Defects detection
- Infections, diseases, contamination

Fish & Meat
- Protein and Fat content
- Moisture
- Collagen
- Bone residues
Example: Soil and Vegetation

Monitoring health of cultures and soil composition thanks to spectral imaging in SWIR

- Targeted use of water and agrochemicals
- Early detection of diseases
- Better prediction of yields and risks

\[\lambda = 1649 \text{nm} \]
Example: Recycling

Hyperspectral SWIR cameras enable recognition and sorting of the main types of plastic used in consumer applications.
Surveillance Benefits

SEEING BEYOND VISIBLE LIGHT

SWIR Abilities:
- Improved contrasts in challenging atmospheric conditions (fog, haze, smog, ...)
- Images through glass (Windows, windshields, etc...)
- Identification capabilities (Imaging with shadows and contrasts)
- Laser spot detection

Poor weather conditions
Reduced scattering compared to visible

VISION Days
2018

Sébastien Frasse-Sombet
SWIR InGaAs Detectors
InGaAs Detectors

III-V Detection Circuit

Hybridization process

AR coating

InP Substrate

InGaAs Absorption Layer

CMOS Read-Out Circuit

Quantum Efficiency (%)

Typical CMOS

InGaAs

Visible

NIR

SWIR

\(\lambda_{on} = 0.9 \mu m \)

\(\lambda_{off} = 1.7 \mu m \)

\(\lambda (nm) \)

300 500 700 900 1100 1300 1500 1700 1900

VISION Days 2018

Sébastien Frasse-Sombet
TEC Cooled InGaAs Sensor

- Sapphire window
- Hybridized chip
- Interconnection ceramic
- Packaging
- Thermoelectric cooler

SNAKE SW

- VGA – 640x512
- 15µm pitch
- High speed – 300FPS
- Low readout noise and dark current
- Best available SWIR image quality
Temperature Impact on InGaAs

- InGaAs has higher dark current (I_{dc}) than visible sensors

- Dark signal (S_{dc}) reduces Dynamic Range
 - Exponential increase with Temperature
 - Linear increase with integration time

- Dark current noise (N_{dc}) reduces SNR

\[
S_{dc}(e^-) = I_{dc}(A) \times \frac{T_{\text{int}}}{e}
\]

\[
N_{dc} = \sqrt{S_{dc}}
\]
Sofradir InGaAs Technology

- Leading edge InGaAs detection layer quality for best-in-class dark current performance
 \[I_{dc} = 30fA @ \text{ambient temperature} \]

Conditions for Good Performance without cooling

- Tint < 1ms at High Gain
- Tint < 100ms at Low Gain

Cooling required

- Very low light applications requiring High Gain and long exposures
Machine Vision Applications

- Require short Tint for inspection of fast moving objects
- Can / Have to provide illumination

- Uncooled operation of the Snake SW detector possible without sacrificing performance
- Snake SW enables operation up to 300FPS with VGA format, compatible with in-line sorting equipment implementation
Uncooled InGaAs Sensor

SNAKE SW TECLESS

- World’s smallest SWIR VGA (16.5mm square)
- Cost optimized uncooled detector
- Ideal choice when dark current impact is minimal: High illumination / Low integration time
Typical Implementation

Proximity Electronics
- Analog to digital conversion (2 to 8 channels)
- Power supply to sensor
- Available off the shelf Sofradir Megalink board

Processing Electronics
- Image correction, application specific SW

- BPR: Bad Pixels Removal
- NUC: Non-uniformity Correction
- AE: Auto-Exposure

Interface Electronics
- Input/Outputs

Simplified by Snake leading edge SWIR image quality:
- 99.7% typical Bad Pixels and 4% Non-Uniformity
Conclusions
Conclusions

- SWIR Imaging enables collection of “invisible” information for solving new challenges in Machine Vision

- SWIR Spectral Imaging can provide material and chemical composition of products in-line

New generation InGaAs detectors with high speed and low noise can be operated uncooled with minimal impact on performance, thus offering an affordable sensor solution
SNAKE SW TECLESS

Sébastien Frasse-Sombet
Product Line Manager
Sebastien.Frasse-Sombet@sofradir.com
+33 6 44 13 96 20

ENABLING VOLUME
INDUSTRIAL
AND SURVEILLANCE
APPLICATIONS